«Радиоастрон» заберется в «кротовые норы» Вселенной

radioastron spektr_r1Впервые за четверть века российские ученые получили новый спутник. Он в 1000 раз зорче американского «Хаббла»

Американцы-то уже и всерьез засобирались на Марс. Мы вроде и хотим на Красную планету. Но на чем? Все как-то вяло, зыбко и скрытно. Вот и начинаешь предполагать: раз темнят, значит, что-то не то... Надоела эта беспросветность на дороге к звездам. И вот тут - ура! - вдруг на ней светлое пятно. Вчера ракета «Зенит 3М» точно вывела за пределы Земли спутник «Радиоастрон», а разгонный блок «Фрегат-СБ» направил его точно на нужную орбиту.

Запуск «Радиоастрона» - самое важное событие для наших физиков и астрономов за последнюю четверть века. Пятнадцать лет назад в «молоко» ушла последняя оте­чественная научная станция «Марс-96». Два года назад на орбиту закинули аппарат «Коронас-Фотон». Он должен был исследовать Солнце. Проработав меньше года, он заглох - отказала система электропитания. Так что до вчерашнего дня на орбите российских научных спутников не было вовсе.

И вот - «Радиоастрон»! Задумывался он еще в 1985-м. И если бы не разрушительные 90-е, он бы давно уже исследовал. Но… Говорят, за четверть века даже команда, разрабатывавшая аппарат, не слишком поменялась: астрономы - большие романтики и верили, что в конце концов радиотелескоп запустят. Думаю, именно на этой вере они и довели дело до конца. До утра понедельника ученые отказывались комментировать грядущий пуск - боялись сглазить.

Ученых теперь ждут уникальные находки. Но и для нас, путающих понятия «интерферон» и «интерференция», радиотелескоп - штука полезная. Почему?

...Есть ли жизнь на других планетах, точно выяснится в ближайшие пару десятилетий. Это в одном из интервью оптимистично пообещал руководитель Астрокосмического центра Физического института имени П. Н. Лебедева (АКЦ ФИАН) РАН академик Николай Кардашев, один из отцов «Радиоастрона». Корифей научного мира и автор классификации внеземных цивилизаций.

Не думаю, что ученые вози­лись столько лет с «Радиоастроном», только чтобы определить, на какой из планет могут проживать зеленые человечки. Но с помощью этого образа легче объяснить возможности «Радиоастрона». Благодаря новым технологиям наблюдения за звездами исследователи чуть ли не каждый год обнаруживают по нескольку планет, похожих на Землю. А вот есть ли на них жизнь, атмосфера, входит ли в ее состав кислород?

В знаменитый американский телескоп «Хаббл» этого не разглядишь. «Хаббл» рассматривает дальние галактики с помощью линз, как сквозь большое увеличительное стекло. Фотографии звездных скоплений получаются чудесные. Но это предел возможностей оптики. А вот с помощью радиоволн можно узнать гораздо больше о составе звезд, о темной материи, пульсарах и межзвездной плазме и даже о популярных нынче у писателей-фантастов «кротовых норах». В этом смысле «Радиоастрон» в тысячу раз зорче, чем «Хаббл». И тут штука в том, что работает он не один, а в связке с самыми мощными наземными радио­телескопами. В проекте участвуют сеть российских телескопов «Квазар», американские радиообсерватории «Аресибо» и «Грин Бэнк», германская обсерватория в Эффельсберге.

Исследования строятся так. В какой-то момент все телескопы - и наземные, и «Радиоастрон» - нацеливаются на один и тот же объект и начинают его «слушать». Это как на приеме у терапевта. Одно дело, когда ваше сердце слушает врач с помощью фонендоскопа, совсем другое, когда крепятся десятки датчиков и аппаратура снимает электрокардиограмму. В этом и есть принцип интерференции.

- Система радиотелескопов позволит получать изображения небесных объектов с беспрецедентной детализацией - примерно в 20 миллионов раз лучше, чем видит человеческий глаз, - рассказывает Владимир Жебит из инновационного центра ФИАН.

А практическая польза? Пожалуйста!

В 2012 году ученые не исключают увеличения техногенных катастроф на Земле. Причина - увеличение солнечной активности. Ученые на этот период собираются отрядить «Радиоастрон» на солнечную вахту - он займется мониторингом солнечной активности. И тогда специалисты смогут более точно предупреждать землян о возможных грядущих проблемах с техникой.

http://kp.ru/daily/25721/2713483/

Глаза во Вселенной

07.01.2012

 http://www.vesti.ru/doc.html?id=674970&;cid=7

Радиоастрон начал работу / RadioAstron or Spektr R

http://www.youtube.com/watch?feature=player_embedded&;v=dpItFkXmLDs

Обсерватория «Радиоастрон»

http://www.youtube.com/watch?feature=player_embedded&;v=ByVOLjoukt4

ЗВУКИ КОСМОСА. ЧЕРНАЯ ДЫРА

http://www.youtube.com/watch?feature=player_embedded&;v=vcGSbE6aJ1k

Путешествие во времени возможно

http://www.youtube.com/watch?feature=player_embedded&;v=yUvobI5P5fE

"Спектр-Р" - окно во Вселенную

http://www.youtube.com/watch?v=Y0s9g3iuVtY

Тур по Кассиопее А

http://www.youtube.com/watch?feature=player_embedded&;;;;v=HwTAXhPWQc4

Международный проект "Радиоастрон"

Общие сведения о проекте "Радиоастрон"

   Орбитальная астрофизическая обсерватория "Спектр-Р" образует совместно с земными радиотелескопами радиоинтерферометр со сверхбольшой базой и предназначена для проведения фундаментальных астрофизических исследований в радиодиапазоне электромагнитного спектра. Международный проект Радиоастрон предусматривает запуск космического 10-метрового радиотелескопа на высоко апогейную орбиту спутника Земли. Цель проекта состоит в том, чтобы создать совместно с глобальной наземной сетью радиотелескопов единую систему наземно-космического интерферометра для получения изображений, координат и угловых перемещений различных объектов Вселенной с исключительно высоким разрешением.

    Орбита спутника Радиоастрон имеет радиус апогея до 350 тысяч километров. Интерферометр при таких базах обеспечит информацию о морфологических характеристиках и координатах галактических и внегалактических радиоисточников с шириной интерференционных лепестков до 8 микросекунд дуги для самой короткой длины волны проекта 1.35 см.

radioastron spektr_r4

 

Программа Радиоастрон, разработанная Астрокосмическим центром (АКЦ) Физического института им. П.Н.Лебедева Российской академии наук совместно с другими институтами РАН и организациями Федерального космического агентства (Роскосмос), расширилась в глобальное международное сотрудничество. Ученые нескольких стран создали часть бортовых научных приборов, специальные телеметрические станции и центры обработки, составили научную программу и подготовили участие в проекте Радиоастрон крупнейших наземных радиотелескопов. При этом Россия создала спутник, антенну космического радиотелескопа и часть бортовых приборов. Космический аппарат и конструкция космического радиотелескопа разработаны в НПО им. С.А.Лавочкина.

 

Цель миссии "Радиоастрон"

Главная научная цель миссии - исследование астрономических объектов различных типов с беспрецедентным разрешением до миллионных долей угловой секунды. Разрешение, достигнутое с помощью Радиоастрона, позволит, в принципе, изучать такие явления и проблемы как:

  • центральная машина активных галактических ядер (АГЯ) около сверхмассивных черных дыр, обеспечивающая механизм ускорения космических лучей - форма, размеры, скорость и ускорение излучающей области ядра, спектр и поляризация излучения деталей и их переменность;
  • космологическая модель, темная материя и энергия по зависимости перечисленных выше параметров АГЯ от красного смещения, а также по наблюдению их через гравитационные линзы;
  • строение и динамика областей звездообразования в нашей Галактике и АГЯ по мазерному и мегамазерному излучению;
  • нейтронные (кварковые) звезды и черные дыры в нашей Галактике - структура по РСДБ наблюдениям и по измерениям флуктуации функции видности, собственные движения и параллаксы;
  • структура и распределение межзвездной и межпланетной плазмы по флуктуациям функции видности пульсаров;
  • построение высокоточной астрономической координатной системы;
  • построение высокоточной модели гравитационного поля Земли.
Общий вид космического аппарата "Спектр-Р" на орбите
radioastron spektr_r5

Основные характеристики КА "Спектр-Р"

  • Масса КА - 3800 кг, в т.ч. масса модуля полезной нагрузки - 2500 кг
  • Мощность СЭС - 2400 Вт, при этом доля полезной нагрузки - 1200Вт
  • Точность наведения КА - 32 угл.сек
  • Ориентация КА - трехосная, прецизионная. Ошибка стабилизации - 2,5 угл.сек
  • Срок активного существования - 5 лет
  • Максимальная скорость разворотов >0,1 град/с
  • Скорость дрейфа при стабилизации 0,36 угл.сек /с
  • Точность знания ориентации 0,02 градуса

Схема эксперимента

radioastron spektr_r6

Разрешение интерферометра прямо пропорционально времени наблюдения и длине базы интерферометра. При наблюдении с Земли база интерферометра ограничена диаметром Земли, а время наблюдения измеряется часами и ограничивается вращением планеты и выходом одного из телескопов из поля зрения.

radioastron spektr_r7

В проекте "Радиоастрон" применение радиотелескопа на высокоэллиптической орбите позволяет получить интерферометр у которого время наблюдения соизмеримо с периодом обращения, а длина базы интерферометра - с диаметром орбиты. Интерферометр при таких базах обеспечит информацию о морфологических характеристиках и координатах галактических и внегалактических радиоисточников с шириной интерференционных лепестков до 33 микросекунд и даже до 8 микросекунд дуги для самой короткой длины волны проекта 1,35 см.

radioastron spektr_r8

В качестве наземного плеча интерферометра могут использоваться радиотелескопы Медвежьи Озёра, Калязин, Аресибо, Бонн, Евпатория, Мадрид и другие.

Для сопровождения миссии готовятся наземные станции слежения ВИРК: в России - Пущино (АКЦ ФИАН) и две станции за рубежом.

Станции слежения обеспечивают выполнение следующих функций:

  • приём цифрового потока научных и служебных данных;
  • синхронизацию работы бортовой научной аппаратуры космического аппарата от наземного водородного стандарта чистоты (путем передачи на борт КА сигнала частотой 7,2075 ГГц и приема обратного сигнала на частоте 8,400 ГГц);
  • для баллистической поддержки по определению положения космического аппарата на орбите.

radioastron spektr_r9

Предприятия и организации - участники создания космического аппарата "Спектр-Р"

Космическая платформа "Навигатор"

radioastron spektr_r10

Комплекс научной аппаратуры

radioastron spektr_r11

Состав и основные характеристики

космического радиотелескопа

 

Зеркальная антенна космического радиотелескопа диаметром 10 м изготовлена из композиционного материала (углепласт-алюминиевые соты-углепласт) и состоит из 27 раскрывающихся лепестков и центрального зеркала диаметром 3 м. Отношение фокусного расстояния к диаметру 0.43 и максимальные отклонения поверхности зеркала от идеальной не более 2 мм. Диапазоны приемников 0.324, 1.66, 4.83 и 18.4-25.1 ГГц.

Кольцевой 4-х диапазонный облучатель в фокусе КРТ обеспечивает возможность одновременного наблюдения на двух частотах или в двух круговых поляризациях. Все частоты комплекса КРТ синхронизованы с высокостабильными опорными сигналами, передаваемыми наземными станциями слежения, которые оборудованы водородными стандартами частоты. Спутник располагает также собственными бортовыми рубидиевым и водородным стандартами частоты для независимой синхронизации частоты и радиометрического режима.

Малошумящие усилители диапазонов L, С и К расположены вне герметичного контейнера и охлаждаются до температуры (100-150) К с помощью бортовой радиационной системы охлаждения. Малошумящий усилитель для Р-диапазона расположен внутри термоконтейнера и работает при температуре приблизительно 300 К. Приемник каждого диапазона имеет два канала: один для левой и один для правой круговой поляризации. При спектральных исследованиях центральная частота К-диапазона может настраиваться на любое значение в окнах 21160-21288 и 22136-22232 МГц (для двух поляризаций). Это делается для наблюдений спектральных линий Н20 мазеров с учетом красного смещения (разброс по скоростям от -300 до +1300 км/с и от +12700 до +14500 км/с).

Форматер КРТ обеспечивает однобитное квантование данных и четыре наблюдательных режима.

Диапазон

Р

L

С

К

Центральная частота (МГц)

327

1665

4830

18392- 25112

Ширина регистрируемой полосы (МГц) (для каждой поляризации)

4

32

32

32

Шумовая температура системы (К)

70

50

50

60

Эффективность антенны

0.3

0.5

0.5

0.3

Чувствительность КРТ (Ян)

8200

3500

3500

7000

Состав и основные характеристики космического радиотелескопа

radioastron spektr_r12

Высокоинформативный научный радиокомплекс

 

radioastron spektr_r13

Максимальная скорость формирования научных данных 128 МБит/с при общей скорости в 144 МБит/с. Передача данных обеспечивается на частоте 15,000 ГГц. Исходящий поток данных разбит на кадры в 20000 байт длиной. Система ВИРК обеспечивает также двухстороннюю когерентную связь для передачи фазы на частоте 7,207500 ГГц вверх и 8,400 ГГц вниз. Опорный сигнал для КРТ обеспечивается водородным мазером на станции слежения, куда передаются также расчетные навигационные данные.

 

Радиоэлектронный комплекс

Радиоэлектронный комплекс состоит из следующих составных частей:

Научный контейнер - ФГУП "НПО им. С.А. Лавочкина";

Фокальный контейнер - ФГУП "НПО им. С.А. Лавочкина";

Бортовые водородные стандарты частоты - ЗАО "Время-Ч", Нижний Новгород;

Радиоэлектронный комплекс

Фокальный модуль

Фокальный модуль состоит из фокального контейнера и фокального узла.

radioastron spektr_r14

В состав фокального модуля входят:

  • малошумящий усилитель диапазона 92 см. ОАО КБ "Горизонт", Нижний Новгород;
  • малошумящий усилитель диапазона 1,35 см. ФГУП ОКБ ИРЭ РАН;
  • малошумящий усилитель диапазона 6см. ФГУП ОКБ ИРЭ РАН;
  • малошумящий усилитель диапазона 18см. CSIRO - Commonwealth Scientific and Industrial Research Organization, Австралия;
  • конструкция контейнера, СОТР - "холодная плита", БКС - ФГУП "НПО им. С.А. Лавочкина"

Радиоэлектронный комплекс

Научный контейнер

 

radioastron spektr_r15

Научный контейнер состоит из следующих составных частей:

- бортовые рубидиевые стандарты частоты. Обсерватории Ношатель, Швейцария

- формирователь гетеродинных и тактовых сигналов. ЗАО НПП "Салют-27", Нижний Новгород

- преобразователи сигналов. ФГУП ОКБ ИРЭ РАН

- блок управления и анализа состояния. ОАО "ОКБ AAЛAM" Бишкек, Киргызстан

- конструкция контейнера, СОТР, БКС - ФГУП "НПО им. С.А. Лавочкина"

Новые технические решения, применённые при разработке

космического аппарата «Спектр-Р»

 

При создании космического аппарата "Эпектро-Л" использован огромный опыт и преемственность научно-технических разработок, которые были успешно реализованы в других темах НПО имени С.А.Лавочкина. Все вновь разработанные решения прошли полный цикл наземной отработки.

КА построен по модульному принципу в негерметичном исполнении. В НПО имени С.А.Лавочкина разработана унифицированная космическая платформа "Навигатор", которая в настоящее время используется для космических аппаратов "Электро-Л", "Спектр-Р", "Спектр-РГ", "Спектр-УФ"и других.

radioastron spektr_r16

radioastron spektr_r17

Применены сотовые панели со встроенными тепловыми трубами, как несущего конструктивного элемента, используемого для размещения бортовой аппаратуры.

radioastron spektr_r18

radioastron spektr_r19

Конструкция космического радиотелескопа, состоящая из 27-ми лепестков поистине уникальна. Лепестки представляют собой углепластиковую трёхслойную сотовую конструкцию. Наземная отработка раскрытия КРТ потребовала применения оригинальных технических решений.

Для запуска космического аппарата использован разгонный блок "Фрегат-СБ", позволивший оптимизировать средства выведения КА на высокоапогейную орбиту.

radioastron spektr_r20

Комплексная программа экспериментальной отработки

космического аппарата «Спектр-Р»

 

При создании космического аппарата был выполнен весь объём комплексной программы экспериментальной отработки, подтверждающей его работоспособность. При этом отрабатывались как отдельные агрегаты (более 100 наименований), так и стендовые изделия.

radioastron spektr_r21

Антенный макет, на котором была подтверждена правильность размещения элементов АФС на борту космического аппарата.

Конструкторский макет, на котором была проведена увязка всех элементов конструкции и бортовой кабельной сети.

radioastron spektr_r22
radioastron spektr_r23

Изделие вибродинамических и статических испытаний, на котором была подтверждена прочность и стабильность конструкции космического аппарата.

Специфика конструкции КА потребовала проведения расчёта динамической схемы, подтверждённой комплексом мероприятий по определению динамических характеристик КА и его составных частей, для оценки их влияния на выполнение целевых задач.

radioastron spektr_r24
radioastron spektr_r25

Изделие (двигательная установка) огневых испытаний, на которой был проведён полный цикл натурных огневых испытаний.

Габаритно-эксплуатационный макет, на котором проведена проверка правильности принятых решений при работах с изделием на техническом и стартовом комплексах, при заправке.

radioastron spektr_r26
radioastron spektr_r27

Изделие тепловакуумных испытаний, подтвердившее правильности принятых решений и теоретические расчёты СОТР КА.

Этап электрорадиотехнических испытаний, на котором проведена полна проверка функционирования и взаимодействия всех бортовых систем, отработаны алгоритмы парирования нештатных ситуаций, проведены испытания на ЭМС и ЭСР.

radioastron spektr_r28

Комплексные испытания и подготовка к запуску лётного образца

космического аппарата «Спектр-Р»

 

Отработка лётного космического аппарата "Спектр-Р " проведена в полном объёме и основана на многолетнем опыте создания космической техники.

На КА проведены комплексные испытания разобранного изделия. Этап, на котором отрабатывается полный объём испытаний бортовой аппаратуры, на котором есть возможность обеспечить доступ к любому прибору, блоку, агрегату в случае возникновения неполадок.

radioastron spektr_r29
radioastron spektr_r30

Космический аппарат "Спектр-Р" прошёл проверку работоспособности в вакууме - условиях максимально приближенных к натурной эксплуатации на орбите.

КА "Спектр-Р" прошёл полный комплекс электрических испытаний собранного изделия. Были проверены работоспособность и взаимодействие всех систем.

radioastron spektr_r31
radioastron spektr_r32

Проведены контрольно- юстировочные операции, технологические виброиспытания, испытания на герметичность двигательной установки, проверка зазоров с головным обтекателем и определение масс- центровочных характеристик.

В процессе приёмосдаточных испытаний КА были проведены проверки функционирования всех раскрывающихся элементов: антенны КРТ, панелей солнечных батарей, антенн, штанги магнитометра

radioastron spektr_r33
radioastron spektr_r34

Заключительные операции перед отправкой на технический комплекс включают очистку и проверку чистоты поверхности КА, окончательную установку экранно-вакуумной теплоизоляции.

Циклограмма и средства выведения

космического аппарата "Спектр-Р" на орбиту

 

Запуск КА производится с космодрома Байконур ракетой-носителем «Зенит» с разгонным блоком «Фрегат-СБ» по трассе, обеспечивающей выведение ГБ (РБФ-СБ + КА) на высокоэллиптическую орбиту с наклонением ~ 51.6 град.

radioastron spektr_r35

Схема полета при выведении КА включает в себя следующие элементы:

  • старт и полет ГБ в составе РН;
  • отделение ГБ от 2-й ступени РН;
  • пассивный полет ГБ по опорной орбите (-3/4 витка);
  • первое включение МДУ РБ для разгона на промежуточную орбиту с использованием топлива из СББ, отделение СББ;
  • пассивный полет ГБ по промежуточной орбите в течение одного витка;
  • второе включение МДУ РБ для выхода на орбиту отделения КА с использованием топлива из основных баков;
  • пассивный полет ГБ по орбите отделения до достижения зоны видимости станций слежения;
  • отделение КА, выход на квазицелевую орбиту (~3,6 часа после старта РН);

пассивный полет РБ по квазицелевой орбите с передачей на Землю ТМИ и проведением траекторных измерений для определения фактических параметров сформированной целевой орбиты;

radioastron spektr_r36

Разгонный блок "Фрегат СБ" на соместных испытаниях БМСС "Навигатор"

radioastron spektr_r37

Ракета-носитель "Зенит"

http://www.roscosmos.ru/main.php?id=363

 

Вывоз "Зенита" со "Спектром-Р".

http://www.youtube.com/watch?v=O7hAqMtue-I

 

Проект Радиоастрон и космическая радиоастрономия

Академик Н.С. Кардашёв

Астрокосмический центр Физического института им. П.Н. Лебедева РАН

 

Новые открытия астрофизики

 

Астрономия стала всеволновой за последние 50 лет. Колоссальным образом расширился объем информации, обнаружены принципиально новые объекты во Вселенной, новые состояния вещества и даже принципиально новые виды материи. Остановимся на некоторых научных проблемах, новых методах космических исследования и ожидаемых результатах, которые могут быть получены в ближайшее время.

Одним из главных последних достижений является определение наиболее важных космологических параметров Вселенной. На основе данных, полученных с помощью наземных и космических обсерваторий (гамма телескоп «GRO», рентгеновские телескопы «Chandra», «ХММ-Ньютон» и «INTEGRAL», оптический телескоп имени Хаббла - «HST», инфракрасные телескопы «IRAS», «ISO» и «Спитцер», радиотелескопы «СОВЕ», «WMAP» и другие) в основном выявлена картина физических процессов во Вселенной во всех спектральных диапазонах (от гамма до радио) и объединяющая этапы эволюции за миллиарды лет. На усреднённом полном спектре электромагнитного излучения неба (рис. 1), охватывающем все диапазоны, выделяются три характерные пика. Прежде всего это оставшееся от Большого взрыва Вселенной реликтовое космологическое излучение (главный максимум в спектре). Большая часть энергии сосредоточена в миллиметровом диапазоне и соответствует излучению тела при абсолютной температтуре 2,730 К (т.е. –270 С). Форма спектра описывается функцией Планка. Слева от реликтовогоизлучения (дециметровые и метровые радио волны) преобладает излучение релятивистских электронов и горячей межзвёздной плазмы нашей и других галактик.

radioastron spektr_r40

Рис. 1 - Усреднённый спектр электромагнитного излучения неба во всех диапазонах.
 

В левой стороне – радиодиапазон, главный максимум соответствует миллиметровому диапазону, правее идут субмиллиметровый, инфракрасный, оптический, рентгеновский и гамма диапазоны. По вертикальной оси отложена интенсивность излучения в логарифмическом масшштабе (число фотонов, приходящих за секунду на квадратный сантиметр поверхности из телесного угла стерадиан в полосе нанометр), по горизонтальной оси – тоже в логарифмическом масштабе частота, длина волны и энергия фотонов (R.C. Henry, Asrophysical Journal, 516, L49, 1999). Главный пик является «реликтовым» космологическим излучением, возникшим в результате «Большого взрыв». Пик справа от него обусловлен в основном излучением пыли и звёзд Галактики, ещё правее – пик от мощных взрывов и очень горячих объектов в нашей и других галактиках.

В субмиллиметровом и инфракрасном диапазонах (средний пик) преобладает излучение газопылевых облаков Галактики, а в оптическом - ее звёзд.. Кроме главного и инфракрасного пиков в спектре неба выявлен пик в рентгеновском диапазоне, обусловленный очень горячими или взорвавшимися объектами в нашей и других галактиках. Описанная выше форма спектра неба определяет и технику астрономических исследований. Диапазоны слева и справа относительно максимума реликтового фона имеют принципиально разные ограничения при обнаружении и исследовании слабых источниковов. Та часть спектра, что находится справа от реликтового фона, подчиняется квантовой статистике и предельная чувствительность определяется флюктуациями числа квантов, приходящих в телескоп. В левой половине спектра основную роль играет обычная физика (отдельные кванты уже не могут быть зарегистрированы), поэтому приёмники радиотелескопов стремятся создать с минимальной мощностью шумов, включая мощность, обусловленную фоном неба.

Важнейшим достижением астрофизики последних 20 лет стало детальное изучение спектра и распределения по небу реликтового изучения (термин предложен И.С. Шкловским). На карте, построенной по данным американской космической обсерватории «WMAP», запущеной в 2001 г., можно проследить распределение по небу фонового радиоизлучения в миллиметровом и коротком сантиметровом диапазонах. Первый эксперимент по составлению карты микроволнового фонового излучения Вселенной был проведен на спутнике «COBE» (запущен в 1989 г.). На основе данных «СОВЕ», наземных наблюдений и наиболее точных данных спутника «WMAP» сделаны фундаментальные открытия, заставившие изменить современные представления о строении Вселенной. Установлено, что около 70% ее вещества сосредоточено в виде «скрытой энергии» и около 25% содержится в «темной материи», определяющих расширение Вселенной и связанных с образованием ее объектов – звезд, планетных систем, галактик, скоплений галактик.

 

Планируемые эксперименты в радиоастрономии

 

В радиодиапазоне имеются несколько перспективных направлений развития исследований объектов Вселенной. В России, совместно с широкой международной кооперацией, подготовливается к запуску космическая обсерватория «Радиоастрон», которая обеспечит угловое разрешение в 30 раз лучше, чем на Земле (рис. 2).

radioastron spektr_r41

Рис. 2 - Основные параметры интерферометра Земля-космос «Радиоастрон».

Этот космических радиотелескоп предполагается вывести на эллиптическую орбиту с периодом около 9,5 суток и максимальным удалением от Земли 350 тыс. км, т.е. близким к орбите Луны (рис. 3).

radioastron spektr_r42

Рис. 3 - Орбита космического радиотелескопа - интерферометра.

radioastron spektr_r43

Рис. 4 - Космический радиотелескоп во время испытаний на обсерватории ФИАН в Пущино

 

radioastron spektr_r44

Рис. 5 - Радиотелескоп РТ-64 около г. Калязин (радиообсерватория АКЦ ФИАН и ОКБ МЭИ).

 

radioastron spektr_r45

Рис. 6 - Крупнейшие радиотелескопы мира, участвующие в проекте «Радиоастрон».

 

radioastron spektr_r46

Рис. 7 - Проект «Миллиметрон» (криогенный телескоп для исследований в автономном и интерферометрическом режимах в миллиметровом и субмиллиметровом диапазонах)

 

radioastron spektr_r47

Рис. 8 - Аккреционный диск и релятивистские струи около сверхмассивной черной дыры в центре галактики

 

radioastron spektr_r48

Рис. 9 - Радиоизображение близкой галактики М87 с сверхмассивной чёрной дырой (получено в США с помощью 27-элементного радиоинтерферометра VLA ). На врезке – радиоизображение центральных областей той же галактики, полученное с участием японского космического радиотелескопа VSOP.

 

radioastron spektr_r49

Рис. 10 - Радиоизображение экзотического двойного объекта 3С 343.1. Два близких источника разлетаются друг от друга со скоростью в половину скорости света (получено с помощью системы VLA в США).

 

radioastron spektr_r50

Рис. 11 - Модели Большой Вселенной с тоннелями – справа, без тоннелей – слева

 

Увеличить

Рис. 12 - Радиоизображение галактики М106 с сверхмассивной чёрной дырой в центре. На врезке показаны расположение и орбиты областей звёздообразования, излучающих в линии водяного пара на волне 1,35 см («Мегамазер»), а также релятивистская струя вещества, имеющая непрерывный радиоспектр, и ориентированная перпендикулярно диску.

 

radioastron spektr_r51

Рис. 13 - Схема «межзвездного интерферометра» (внизу). На пути радиоволн от источника излучения до наблюдателя случайно расположены облака межзвездной плазмы, создавая естественный интерферометр. Анализируя возникающую интерференционную картину, можно определить размер источника излучения и параметры плазмы. Дан пример такой картины (динамический спектр) для пульсара PSR 1237+25, полученный А. Волчаном и Дж. Кардесом.

 

radioastron spektr_r52

 Рис. 14 - Задачи фундаментальной астрометрии в проекте «Радиоастрон».

radioastron spektr_r53

Рис. 15 – Высокоточное измерение гравитационного поля Земли в проекте «Радиоастрон».

 

radioastron spektr_r54

Рис. 16 - Концепция многолучевого космического радиотелескопа с диаметром антенны в несколько километров.

На нем будут установлены приемники, работающие в 4 диапазонах и каждый имеет два канала для приёма сигналов в обеих круговых поляризациях.

Космическая радио обсерватория работает как гигантский интерферометр с базой между спутником и системой наземных радиотелескопов. Используя такой интерферометр, мы можем получить исключительно высокое угловое разрешение и построить изображения небесных объектов с высочайшей детальностью. Ширина лепестка интерферометра на самых коротких длинных волнах будет до 7 миллионных долей секунд дуги, что при отношении сигнала к шуму около 10 позволит проводить измерения до микросекунды дуги, что примерно в 20 млн. раз лучше, чем разрешение человеческого глаза.

Действующий макет космического радиотелескопа изготовлен в НПО им. С.А. Лавочкина, укомплектован высокочувствительной приёмной аппаратурой и испытан на обсерватории ФИАН в г. Пущино, где было подтверждено, что все основные параметры (эффективная площадь антенны и диаграммы направленности) соответствуют техническим требованиям (рис. 4).

Для космического радиотелескопа была специально найдена необычная орбита полета у которой существенную роль играет гравитационное поле Луны, систематически поворачивающее плоскость орбиты около большой её оси. Хотя Луна и находится довольно далеко от спутника, на расстоянии более 50 тыс. км, тем не менее она оказывает постоянное слабое гравитационное воздействие на него. Поворот орбиты обеспечивает высокое разрешение изображения исследуемого небесного объекта по всем направлениям.

Все наземные радиотелескопы, задействованные в системе интерферометра, будут принимать сигналы от исследуемого источника одновременно с космическим радиотелескопом. Прием информации со спутника предполагается получать со скоростью 128 Мбит/с. Приемные станции находятся в США (Грин Бэнк), в Пущино под Москвой и в Австралии (Тидбинбилла). С такой же скоростью будет регистрироваться информация всеми крупнейшими радиотелескопами, в том числе и отечественными. Это 70-м радиотелескопы в Евпатории и Уссурийске, а также 64-м – в Калязине (рис. 5).

Предполагается, что ко времени запуска «Радиоастрона» наши радиотелескопы будут полностью оснащены всей необходимой приёмной и регисирирующей аппаратурой.

В создании бортового комплекса аппаратуры учасвуют многие международные институты.

Станции приёма информации и синхронизации разработаны в НАСА и Национальной Радиоастрономической Обсерватории США. Крупнейшие радиотелескопы мира предполагают участвовать в проекте (рис. 6).

Проект «Радиоастрон» рассчитан на систематические исследования таких необычных небесных объектов, как сверхмассивные чёрные дыры в ядрах далёких и близких галактик, черные дыры звёздных масс в нашей галактике, нейтронные (а возможно и кварковые) звёзды, областей образования звёзд и планетных систем в нашей галактике и в ядрах других галактик, облаков межзвёздной плазмы и гравитационного поля Земли. Можно будет с высокой точностью изучить структуру, измерить координаты и движение источников мощного радиоизлучения с непрерывным спектром и радиолиний мазерного излучения (линия паров воды на волне 1,35 см и гидроксила – 18 см), испускаемого этими объектами. Для предстоящих наблюдений подготовлен список сверхмассивных черных дыр, микроквазаров, пульсаров, космических мазеров и других радиоисточников - всего несколько сот объектов, а к моменту запуска «Радиастрона» предполагается его пополнить до тысячи.

Дальнейшим развитием этого направления будет подготовка аналогичного проекта для миллиметрового и субмиллиметрового диапазонов (включающих весь пик реликтового космологического излучения – рис. 1).

Проект «Миллиметрон» (рис. 7) обеспечит ещё более высокое угловое разрешение (до наносекунд дуги) и значительно более высокую чувствительность за счёт глубокого охлаждения телескопа и расширения полосы приёма.

Изучение необычных объектов

 

Сверхмассивные черные дыры в центрах нашей и других галактик, выбрасываемые вдоль их оси вращения струи релятивистских частиц и аккреционные диски захваченного вещества в экваториальной плоскости обнаружены и активно исследуются. Изображения таких объектов, полученные с помощью наземной системы радиоинтерферометров, показывают, что центральный объект является сверхмощным ускорителем. Ускоренные частицы с околосветовыми скоростями образуют два тонких луча, а на больших расстояниях релятивистские частицы накапливаются в виде двух облаков. Ближайшей задачей является исследования принципа работы этого ускорителя, величины и структуры электрических и магнитных полей около черной дыры. Современные теоретические модели сводятся к следующему. Вокруг центральной черной дыры вращается диск с очень сильным магнитным полем (рис. 8), однако оно до сих пор не измерено и представляет собой одну из основных задач будущего.

Предполагается, что измерить величину магнитного поля можно с помощью эффекта Фарадея (регулярный поворот плоскости поляризации изучения с изменением длины волны при прохождении поляризованного излучения через плазму с магнитным полем в аккреционном диске).

Если смотреть с полюса на чёрную дыру и вращающийся аккреционный диск с магнитным полем, то область свечения в виде кольца будет соответствовать ускорению частиц подобно ветерку от вентилятора (механизм Блендфорда-Знаека), а если будет обнаружено излучение только вблизи оси вращения, то скорее всего ускорение частиц происходит в условиях высокого вакуума под действием сильного электрического поля.

В центре нашей галактики находится ближайшая сверхмассивная черная дыра (расстояние 24 тысячи св. лет). Ее масса оценивается в 3 миллиона солнечных масс. Одна из самых больших чёрных дыр (масса 3 миллиарда солнечных масс) находится в ядре близкой эллиптической галактики М87 (расстояние около 45 млн. св. лет). Изображение этого объекта получено во всех диапазонах, в частности с помощью наземных радиоинтерферометров и радиоинтерферометра Земля-космос (рис. 9), использующего японский спутник «VSOP» с радиотелескопом, запущенный на эллиптическую орбиту в 1997 г. с антенной диаметром 8 м, максимальное удаление 26 тысяч км.

С помощью этого интерферометра наблюдалось множество других объектов.

Недавно Дж. Бэрбиджем было обращено внимание на необычный двойной квазар 3C 343.1 (рис. 10)

 

Он сначала был найден в радиодиапазоне, а потом исследовался в оптическом. Оказалось, что объект состоит из двух источников, имеющих различные скорости движения, отличающиеся почти на половину скорости света (красные смещения 0,34 и 0,75), в тоже время расстояние между двумя источниками соответствует четверти угловой секунды, т.е. кажется, что они находятся очень близко друг от друга. Случайное совпадения двух источников находящихся на разных расстояниях невероятно. Объяснить, что внутри одного малого объёма имеются предположительно две сверхмассивные чёрные дыры, движущиеся со столь большой скоростью друг относительно друга, пока невозможно и требуется тщательное изучение этих объектов. В частности, необходимо получить более детальное изображение и его изменение со временем, чтобы определить стуктуру компонент и измерить скорости их поперечного движения.

 

«Кротовые норы» - тоннели в пространстве

 

Модель гипотетических «кротовых нор» (первоначально предложена А.Эйнштейном и Н.Розеном) предполагает сложную топологию пространства и основана на общей теории относительности. Входами в тоннели могут быть некие новые объекты, наблюдаемые в нашей вселенной и соединяющие нас с другой частью Вселенной или даже с другой вселенной (рис 11). Около входа в тоннель, также как и для чёрной дыры, может существовать вращающийся газовый аккреционный диск с магнитным полем и вдоль его оси вращения также могут выбрасываться частицы, ускоренные до релятивистских энергий. Главным отличием «кротовой норы» от модели с чёрной дырой будет отсутствие горизонта событий. Т.е. вещество, попадающее в тоннель, не исчезает для внешнего наблюдателя. Оно может и утекать из нашей части Вселенной и притекать к нам. Если тоннели будут открыты, то это необыкновенно расширит наши возможности исследования и даже освоения Вселенной. Как уже отмечалось, вход в «кротовую нору» имеет особенности. Наблюдая за объектом, падающем на планету или звезду, в момент соприкосновения с их поверхностями мы сможем наблюдать вспышку излучения и тем самым фиксировать данное явление. В случае черной дыры тот же самый объект, падающий на нее просто исчезнет. Если же мы падаем внутрь входа в тоннель, то объект будет наблюдаться все время, но с переменным красным смещением. И наоборот, объекты, приходящие из другой Вселенной, или другой части нашей вселенной, тоже будут наблюдаться все время. Отсюда можно сделать прогноз. Если такие объекты существуют, то описанные эффекты должны быть обнаружены и исследованы. Объекты – кандидаты для подобных исследований имеются и наблюдения могут быть проведены с помощью интерферометра «Радиоастрон».

 

Большая Вселенная

 

В современной космологической модели многокомпонентной Вселенной («Мультиверс») отдельные Вселенные постоянно хаотически генерируется из сверхплотного скалярного поляи, она бесконечна в пространстве и во времени. На рис. 11 красным показаны области «кипящего» скалярного поля, плотность которого возможно близка к Планковской плотности (5 × 1093 Г/см3). В вакууме возникают расширяющиеся «пузырьки», которые превращаются в отдельные вселенные. Мы живем в одном из таких «пузырьков». В результате расширения «пузырька» после нескольких фазовых переходов из скапярного поля образуются нормальные элементарные частицы, атомы, молекулы, галактики, звезды, планеты. Если картина такова – мы никогда не узнаем что происходит в других «пузырьках» или параллельных вселенных. Но если есть тоннели («кротовые норы»), то наблюдая (или путешествуя) сквозь них мы можем получить информацию от любой части нашей или других вселенных. Поэтому исследования возможностей их существования или получения доказательства отсутствия таких тоннелей представляет собой важнейшую задачу космологии.

Мазеры и Мегамазеры

 

Космической радиоинтерферометр «Радиоастрон» также предполагается применить для исследований исключительно интенсивного излучения в узких спектральных линиях - мазерного излучения отдельных компактных районов в нашей и других галактиках. Например, близкая область образования обычных звезд и планетных систем в созвездии Лебедя с сильными мазерными линиями гидроксила (волна 18 см) и водяного пара (1,35 см) уже детально исследуется. А в ядре галактики М106 тоже были обнаружены объекты, светящиеся в линии межзвездного водяного пара на длине волны 1,35 см, но с соответствующим красным смещением (рис. 12).

Мощное мазерное излучение («Мегамазеры») из ядра этой галактики было открыто в 1984 году Клауссеном, Хейлигманом, Ло, Хенкелем и др. Как оказалось, районы мазерного излучения - области образования звёзд с планетными системами вокруг центральной сверхмассивной черной дыры ! Подобных внегалактических мегамазеров сейчас уже найдено более двух десятков.

Межзвёздный интерферометр

 

Предложен еще один оригинальный метод, который предполагается использовать для изучения небесных источников с помощью космического интерферометра. Радиоволны существенным образом взаимодействуют со средой, в которой они распространяются, в том числе и с межпланетнной и межзвездной плазмой. Причём космическая плазма неоднородна – имеет облачную структуру. Поэтому статистически от удалённого радиоисточника радиоволны по одному пути приходят быстрее на Землю быстрее, чем по другому.

Таким образом возникает естественный интерферометр. Два луча взаимодействуют и создают периодическую картину. Но в этом случае угловое разрешение получается даже много выше, чем у космического интерферометра (до нано секунд дуги !). Эффект тем сильнее, чем ниже частота. Это явление обнаружено при исследовании пульсаров. Было открыто, что их радио спектры иногда имеют периодическую структуру, которая случайным образом появляется и изменяется со временем (рис. 13).

Поскольку большая ось орбиты «Радиоастрона» порядка размера облаков межзвёздной плазмы, то с помощью космического интерферометра при наблюдениях этого эффекта вероятно удастся измерить диаметр пульсаров – нейтронных (а, возможно, и странных или кварковых ?) звезд, проверить правильность разработанных моделей их строения и излучения. Если масса несколько выше гравитационного предела для нейтронных звёзд, то такого рода объект сжимается сжимается и образует черную дыру. Однако в интервале масс между нейтронными звёздами и гравитационным пределом возможно ещё одно устойчивое состояние вещества, состоящего уже не из нейтронов, а из кварков. Согласно данным рентгеновской обсерватории «Chandra», одним из десятка кандидатов в кварковые звёзды является пульсар внутри оболочки, образованной взрывом сверхновой звезды –радиоисточник 3С58.

Астрометрия и гравиметрия

 

«Радиоастрон» позволяет в десятки раз улучшить точность измерения координат и собственных движений источников радиоизлучения, что позволит с помощью специальной программы создать высокоточную астрометрическую систему координат (рис. 14).

 

Высокоточное измерение орбиты «Радиоастрона» с использованием водородного стандарта частоты и времени на его борту (разработка организации «Время-Ч» в Нижнем Новгороде) позволит построить высокоточную модель гравитационного поля Земли (рис. 15).

Астрометрическое и гравиметрическое направления исследований имеют и прикладной и фундаментальный характер. Измерения гравитационного поля Земли на больших от неё расстояниях связаны с новой научной проблемой, поскольку несколько лет назад обнаружена новая сила, действующая на космические аппараты. Она крайне мала, направлена к Солнцу и не меняется с изменением расстояния до него. Похоже что в нашей планетной системе тоже присутствует «темная энергия» и «скрытая масса». Эти данные получены из точного определения скорости и ускорения космических аппаратов «Пионер-10 и -11», находящихся на периферии Солнечной системы, а также космическим аппаратом «Кассини».

 

Проблема SETI

 

Интерес к проблеме SETI (поиск внеземных цивилизаций) подогревается открытиями в области астрофизики и космологии, а также новыми идеями в теоретической физике. Весьма возможно, что деятельность внеземного разума как-то связана с «тёмной материей» и «скрытой энергией», «кротовыми норами» и возможностью с их помощью создания машины времени, теорией струн в физике элементарных частиц и возможной многомерностью (10-11 и более измерений) нашего пространства. С помощью космических интерферометров, подобных «Радиоастрону», можно изучать такого рода явления. А для обнаружения радиосигналов, подобных нашим радио или телевизионным, от цивилизации нашего уровня развития и с расстояний до ближайших звёзд, нужен космический (чтобы исключить помехи Земли) радиотелескоп с диаметром зеркала в несколько километров. Такой инструмент для этой задачи и других фундаментальных научных исследований вероятно будет сооружен через несколько десятков лет (рис. 16).

 

Основные научные задачи проекта «Радиоастрон».

 

Описанные выше потенциальные возможности наземно-космического радиоинтерферометра СПЕКТР-Р и поисковые проблемы позволяют поставить следующие научные задачи.

Исследование природы источника энергии в ядрах активных галактик.

  • Изучение структуры и динамики изображений близких мощных внегалактических источников для понимания физических процессов вблизи горизонта событий.
  • Измерение яркостных температур центральных компонент в сравнении с комптоновским пределом для однородного синхротронного источника.
  • Измерение размеров компонент вдоль и поперек струи и иисследование их переменности.
  • Измерение распределения яркости в центральных компонентах на масштабах меньше одного парсека в спокойной фазе радиоизлучения и во время вспышки.
  • Определение структуры радиовыброса у его основания в момент зарождения.
  • Определение скоростей движения и расширения выбросов с целью выявления и интерпретации сверхсветовых движений.
  • Проведение всех перечисленных измерений одновременно на двух частотах с целью изучения спектральных свойств радиоизлучения.
  • Проведение всех перечисленных выше измерений в двух поляризациях с целью изучения структуры магнитного поля в центральных компонентах и в выбросах.
  • Исследование двойных ядер.
  • Проведение всех перечисленных измерений для гравитационных линз и темной материи.
  • Выявление объектов с компонентами, неразрешенными с самой большой базой.

 

Исследование космологической эволюции компактных внегалактических источников.

  • Статистический анализ измерений выполненных в предыдущем пункте в зависимости от красного смещения исследуемых объектов с целью выявления закономерностей эволюции ядер галактик и определения основных космологических параметров Вселенной.

Изучение процесса образования звезд и планетных систем.

  • Измерение структуры и динамики мазерных исочников в областях звездообразования.
  • Изучение структуры и динамики источников в мегамазерах.

 

Исследование пульсаров (нейтронных и странных звезд и магнетаров).

  • Измерение годичных параллаксов пульсаров.
  • Измерение собственных движений пульсаров.
  • Изучение структуры области радиоизлучения в пульсарах по флуктуации функции и «межзвездным интерферометром».
  • Изучение двойных и затменных пульсаров.

Микроквазары и радиозвезды.

  • Изучение структуры и динамики выбросов в активной фазе микроквазаров.
  • Изучение структуры радиовспышек в звездах.

 

Космическая баллистика и гравиметрия.

  • Построение и прогнозирование орбиты КА и ее эволюции.
  • Построение гравитационного потенциала Земли на больших расстояниях и построение новой модели ее строения.
  • Измерение эффектов ОТО.

Фундаментальная астрометрия.

  • Построение небесной системы координат нового поколения.
  • Уточнение взаимной ориентации международной небесной и динамической систем координат.
  • Определение координат наземных радиотелескопов в системе, связанной с центром масс Земли.
  • Уточнение фундаментальных астрометрических постоянных и постоянных движения Солнечной системы.

Более подробную информацию о проекте «Радиоастрон» можно получить на сайтах www.asc.rssi.ru/radioastron/rus/index.html  и www.laspace.ru/rus/spectrR.php  .

 

 http://www.roscosmos.ru/main.php?id=148

«Кротовые норы» Вселенной — туннели в пространстве, через которые можно попасть в другие Вселенные и в другое время.

radioastron spektr_r60

Астрофизики будут искать «кротовые норы» Вселенной — туннели в пространстве, через которые можно попасть в другие Вселенные и в другое время. Главным инструментом поиска станет космический телескоп «Радиоастрон», который выйдет на высокую орбиту в конце будущего года. О том, что такое «кротовые норы», мы беседуем с директором Астрокосмического центра ФИАН академиком РАН Николаем Кардашевым.

nikolaj-kardashiov«Кротовая нора» — это туннель, связывающий разные части пространства. Вход в туннель может быть размером со звезду, с планету, с дом, с пылинку. И если вы туда нырнете, то вынырнете в другом месте. Можно попасть в другую часть нашей галактики, можно в другую галактику, можно в другую Вселенную. По физическим свойствам вход в «кротовую нору» очень похож на черную дыру. Отличие в том, что туда можно не только попасть, оттуда можно и вернуться. У «кротовой норы» нет горизонта событий. Если вы в нее погружаетесь, то вас будет все время видно. Оттуда можно посылать радиосигналы, общаться, и даже сквозь этот туннель наблюдать, что делается на другом конце, — если вы наведете телескоп. 

Отчего так? «Кротовая нора» — туннель через какие-нибудь дополнительные измерения? 

Нет, дело не в новых измерениях, это из-за такой сложной топологии пространства. 

Вы, видимо, говорите о кривизне пространства. Действительно, если бы эта самая кривизна у пространства была, тогда понятно: сгибаем его, как лист бумаги, и прокалываем дырку. Если путешествовать по листу, то будет очень далеко, а если через дырку — рядом. Но, насколько я знаю, никакой кривизны у нашей Вселенной не обнаружено, она плоская. 

Да, Вселенная плоская. Но локально кривизна есть. (Любая масса вещества искривляет пространство вокруг себя, особенно сильно этот эффект проявляется у черных дыр с большой массой. — «РР».) «Кротовая нора» — это и есть туннель между двумя входами в тех местах, где кривизна большая. 

«Кротовая нора» образуется в таких местах в обязательном порядке или это случайность? 

Как сделать «кротовую нору», совершенно неясно. И можно ли ее вообще сделать? Но то, что на ранней стадии развития нашей Вселенной все пространство сплошь было набито такими «кротовыми норами», сейчас почти общепринятый взгляд. Потому что пространство перед началом Большого взрыва, перед расширением, представляет собой такую пенообразную структуру сверхплотного скалярного поля с очень большой кривизной. С очень большими флуктуациями кривизны. И все эти ячейки пены между собой соединены. И потом, после Большого взрыва эти ячейки могут остаться соединенными между собой. Это было показано еще в первых публикациях Уиллера в середине пятидесятых годов. 

Сверхплотное скалярное поле пенообразной структуры… Что это? 

Это сверхплотный вакуум, вакуум с очень большой плотностью энергии. Это состояние вещества до начала Большого взрыва. Плотность энергии большая, поэтому кривизна пространства высокая. 

Со времени Большого взрыва прошло 14 мил­лиардов лет. Что стало с ячейками этой пены сейчас? До этого, насколько я слышал, и времени-то никакого не было. 

На сегодня наиболее логически непротиворечивая модель — модель многокомпонентной Вселенной. Потому что, если мы говорим про Большой взрыв, тут же начинают спрашивать: «А что было до Большого взрыва?» или «Что было в том месте, где не было Большого взрыва?» Что, спрашивать нельзя? Люди недовольны таким положением, и правильно, что недовольны. 

Эти вопросы и приводят к понятию многокомпонентной Вселенной. В английском языке есть устоявшийся термин «мультиверс», в русском такого термина нет, поэтому называется так длинно. Это предположение о том, что вся наша Вселенная состоит из бесконечного количества Больших взрывов, которые независимо возникают в разные моменты времени, и пены сверхплотного скалярного поля между ними. И поэтому Вселенная бесконечна и в пространстве и во времени. В разных Вселенных могут быть даже разные законы, разные элементарные частицы. 

У каждой Вселенной где-то очень далеко есть стенки, которые состоят из этого сверхплотного вакуума. Как они будут взаимодействовать с другими пузырями, другими Вселенными — этот вопрос тоже изучается. 

То есть вы от вопроса «А что там, с краю?» не отмахиваетесь? Часто, когда я спрашиваю физиков, что будет, если подобраться к краю, мне отвечают, что ничего особенного я не увижу, будут все те же звезды. Представить наблюдателя, который во время расширения находился там, с краю, мы тоже не можем, потому что вся наша Вселенная родилась из внутренних областей пузыря. А поскольку увидеть мы ничего не можем, то и разговора нет. 

Отворачиваться от таких вопросов, конечно, не нужно. Нужно думать о том, какое есть взаимодействие между той частью, которая похожа на нашу Вселенную, и той, которая совсем не похожа. «Вы об этом не спрашивайте, нам этого не нужно» — приемлемо только для очень небольшого числа людей науки. Ну а дальше уже имеется недовольство экспериментаторов, которые говорят, что теоретики это все придумали, а проверить нельзя. Единственная экспериментальная возможность исследовать другие компоненты «большой Вселенной» — «кротовые норы», которые изначально заведомо были, но неизвестно, существуют ли сейчас. 

radioastron spektr_r61

Каким образом можно обнаружить «кротовую нору»? В последней публикации в «Успехах физических наук» — совместно с Новиковым и Шацким — вы приводите расчеты своей модели «кротовых нор». В чем ее особенности? 

Уиллер первый показал, что в момент Большого взрыва была пенистая структура скалярного поля. Потом в том же институте в Калифорнии Моррис и Торн первыми вывели уравнения, которым должна соответствовать «кротовая нора». Вышла статья, в которой были изложены требования к свойствам вещества, чтобы эта «кротовая нора» не превратилась в черную дыру. Оказалось, что свойства вещества очень похожи на свойства магнитного поля или свойства электрического поля. 

По каким параметрам? 

По уравнению состояния — связь давления и плотности энергии — для направлений вдоль поля и поперек поля. В общем, свойства магнитного поля оказались очень близкими к свойствам «кротовой норы». Мы на это обратили внимание, стали думать, чем магнитные поля у «кротовой норы» должны отличаться от тех полей, которые мы уже наблюдаем. Выяснилось, что вход в туннель будет очень похож на магнитный монополь, то есть магнит с одним полюсом. 

Такого ведь в природе не бывает. У любого магнита два полюса. 

Магнитных зарядов в космосе нет, это правильно. Частицы, несущие такой заряд, — монополи — искали, но не нашли. И сейчас положение такое, что нужно искать магнитные монополи крупного размера. 

Зачем такая экзотика? Вы же сами говорите, что свойства «кротовых нор» похожи и на электрическое поле. А электрических зарядов много: электроны, протоны… 

Да, но параметры «кротовой норы» такие, что нужен монополь большого размера. Электрические поля годятся, но в космосе много свободных электронов, эти электроны обязательно прилетят, и электрическое поле погаснет. Так что искать нужно именно магнитный монополь, и как раз потому, что магнитных зарядов в космосе нет. И вот у нас получается, что у одной горловины «кротовой норы» магнитное поле одного знака, а у другой — другого. Если у нас плюс, то на выходе минус, и наоборот. 

radioastron spektr_r62

Как можно обнаружить этот монополь, а вместе с ним и «кротовую нору»? 

Сейчас есть методы, с помощью которых исследуется структура магнитного поля. Хорошо известна структура дипольного магнитного поля Земли. Есть дипольное поле у некоторых других планет. У Венеры, например, оно слабое, а у Юпитера — сильное. У Солнца есть магнитное поле… Простейший прибор для обнаружения поля — компас. А на Солнце поле измеряется по так называемому зеемановскому эффекту — по расщеплению и поляризации спектральных линий света. Это квантовый эффект: магнитное поле влияет на структуру атомов, у атомов появляются разные специальные мелкие уровни, которые зависят от мощности магнитного поля. Появляются дополнительные спектральные линии. Есть и другие эффекты: эффект Фарадея и эффект Коттона — Мутона, которые влияют на поляризацию света. 

В лабораториях это все проверено и изучено на многих объектах. Мы знаем, какое магнитное поле в межзвездной среде — миллионные доли гаусса (единица магнитной индукции, 1 гаусс равен 0,0001 тесла. — «РР»). На Земле и на Солнце — порядка одного гаусса, в солнечных пятнах — тысячи гауссов. Самые большие поля в нейтронных звездах: в пульсарах — 1020, в магнетарах — 1015). 

Давайте к «кротовым норам» вернемся. Как мы их увидим? 

Наша Федеральная космическая программа предусматривает запуск орбитальных обсерваторий. Одна из них — «Радиоастрон» будет запускаться в конце будущего года. Через восемь лет, в шестнадцатом году, предполагается запустить обсерваторию «Миллиметрон». Эти обсерватории дадут очень высокое разрешение (способность различить две точки, находящиеся рядом. — «РР»): «Радиоастрон» — в 10 млн раз выше, чем у человеческого глаза, миллионные доли угловой секунды, «Миллиметрон» еще раз в сто больше. 

С помощью этих обсерваторий мы заглянем внутрь черных дыр и проверим, не являются ли они «кротовыми норами». Если окажется, что мы увидим лишь мимо пролетающие облака газа и будем наблюдать различные эффекты, связанные с гравитацией черной дыры, искривление траектории света например, то это будет черная дыра. Если же мы увидим радиоволны, идущие изнут­ри, то будет понятно, что это не черная дыра, а «кротовая нора». Построим картинку магнитного поля по эффекту Фарадея. Пока для этого не хватало разрешения наземных телескопов. И если окажется, что магнитное поле соответствует монополю, то это почти наверняка «кротовая нора». Но сначала нужно увидеть. 

Какие-то объекты для наблюдений уже выбраны? 

Сначала предполагаем исследовать сверхмассивные черные дыры в центрах нашей и ближайших галактик. Для нашей — это очень компактный объект с массой в 3 млн солнечных масс. Мы считаем, что это черная дыра, но она может оказаться и «кротовой норой». Есть объекты еще более грандиозные. В частности, в центре самой близкой к нам из массивных галактик М87 в созвездии Девы есть черная дыра с массой в 3 млрд солнц. Эти объекты — одни из самых главных для исследования «Радиоастроном». Но не только они. Есть, например, некоторые пульсары, которые могут оказаться двумя входами в одну и ту же «кротовую нору». И третий тип объектов — всплески гамма-излучения, на их месте возникает также кратковременное оптическое и радиосвечение. Мы их наблюдаем время от времени даже на очень больших расстояниях — как для самых далеких видимых галактик. Они очень мощные, и мы пока не вполне понимаем, что это такое. В общем, сейчас подготовлен каталог из тысячи объектов для наблюдения. 

radioastron spektr_r63

Какие следствия может иметь открытие «кротовых нор»? 

Можно заглянуть в другие части Вселенной, в другие Вселенные. Некоторые известные ученые, например Игорь Дмитриевич Новиков, даже рассматривают вопрос о путешествии в прошлое или будущее, то есть о машине времени. 

Без нарушения причинности? 

Этот вопрос рассматривался в научных публикациях. Но об этом лучше с Игорем Дмитриевичем поговорить. В целом можно сказать, что вопрос путешествия во времени без нарушения закона причинности, вероятно, может быть решен. 

Если представить, что мы когда-нибудь не просто посмотрим, а доберемся до горловины «кротовой норы» и пошлем внутрь космонавта, что он увидит во время путешествия? 

Сидя внутри туннеля, он будет видеть одновременно оба входа. Если только там нет поглощающей свет материи. 

А сами стенки туннеля? Он вообще имеет какую-то протяженность? Или это просто образное название для перемычки между горловинами? 

Это образное название. Перемещение вещества почти мгновенное… Но можно использовать более общее уравнение, и тогда в зависимости от решения путешествие будет длительное или короткое. 

Почему вообще путешествие должно происходить? Если «кротовая нора» существует, с одной стороны у нее какая-то масса вещества, с другой стороны — другая масса. Под действием гравитации путешественник должен посередине застрять… 

Застрять он может только в том случае, если навстречу тоже что-то упадет. Если этого не случится, он улетит через выход. А там все зависит от того, какая масса у противоположной горловины. Они не обязательно одинаковы: все определяется историей входа. Может быть и обмен веществом между ними. А если там много газа и здесь много, то входы могут превратиться в черные дыры и произойдет схлопывание туннеля. Теоретически есть много разных вариантов, но для начала хотелось бы показать, что такие объекты вообще есть.

www.ruword.com

Сергей Лихачев, астрофизик: “Современная астрофизика находится на пороге революции. Я думаю, что в ближайшие десять-пятнадцать лет произойдет изменение нашего понимания о Вселенной.”

f42 продолжает следить за судьбой новейшего  российского космического радиотелескопа “Радиоастрон” (“Спектр-Р”), который был запущен 18 июля с космодрома Байконур на ракете-носителе, что немаловажно, “Зенит-2″. Летно-конструкторские испытания космического аппарата планируется завершить в течение трех месяцев, после чего “Радиоастрон” начнет передавать ценнейшую научную информацию.

Напомню, что разработка международной орбитальной астрофизической обсерватории “Радиоастрон”  была начата около 12 лет назад, это первый с советских времен крупный российский астрофизический аппарат и крупный отечественный астрофизический проект за последние годы.  С помощью “Радиоастрона” ученые намерены изучать процессы внутри активных галактических ядер и около сверхмассивных черных дыр, темную материю, строение и динамику областей звездообразования в нашей Галактике. Кроме того, телескоп должен помочь в создании высокоточной астрономической координатной системы и высокоточной модели гравитационного поля Земли.

Проще говоря, в руках человека теперь находится феноменальный аппарат наблюдения, позволяющий  произвести фундаментальный апгрейд научных знаний о мироздании. Уже даже не кажется фантастикой реально “пощупать” вселенную за пресловутые “Кротовые норы”.

В конце сентября “Спектр-Р” провел первые астрофизические наблюдения космического объекта – остатка сверхновой Кассиопея А, самого яркого радиоисточника на небе.

“Радиотелескоп впервые пронаблюдал космический объект, он “увидел первый свет”, как говорят астрономы… Первые успешные наблюдения доказывают, что родился новый космический телескоп. Телескоп, который, совместно с обсерваториями на Земле, должен позволить нам в будущем исследовать космические объекты с уникальным уровнем детализации”, – отметил Юрий Ковалев (научный сотрудник АКЦ ФИАН), добавив, что сканирование Кассиопеи А прошло “прекрасно”, система наведения работает “замечательно”. Эффективность телескопа оказалась выше, чем при наземных проверках. ”Мы проверяли чувствительность, собирающую площадь, ведь можно сделать большое зеркало, а реально работать, собирать излучение в фокус будет только его небольшая часть”, – пояснил он.

Оказалось, что эффективная площадь телескопа при наблюдениях на18 сантиметрахсоставляет 46 квадратных метров, в то время как наземные испытания давали значение 40 квадратных метров. Радиотелескоп 27 сентября работал в диапазонах длин волн 92 и18 сантиметров, в ближайшем будущем ученые планируют провести наблюдения в диапазонах 6 и1,3 сантиметра.

 

radioastron spektr_r64

 

Сигнал Кассиопеи А, полученный телескопом «Радиоастрон» 

“Наблюдения выполнялись не для того, чтобы получить новые научные данные, а чтобы проверить качество самого телескопа”, – сказал академик  Николай Кардашев (директор Астрокосмического центра Физического института имени Лебедева) . Испытания “Радиоастрона” продолжаются, в ближайшее время будет проверена работа радиотелескопа в двух других диапазонах, а первый сеанс в режиме интерферометра (в паре с наземным телескопом) пройдет в ноябре-декабре.

radioastron spektr_r65

http://www.f42community.com/archives/3480

Заглянуть в дыру

В российских космических исследованиях началась новая эпоха. После запуска в космос обсерватории «Радиоастрон», которая будет с невиданной точностью рассматривать черные дыры и искать тоннели в другие миры, мы вернулись на самые передовые позиции в науке. Запустив спутник на орбиту, Россия создала самый большой в мире телескоп. Вместе с наземными станциями его размер — 330 000 километров. На реализацию этого проекта ушло двадцать пять лет.

 

«Зенит» стартовал 18 июля в 8 часов 31 минуту по местному времени, или в 6.31 по Москве. Ракета спокойно уходила в уже дневное синее небо, на наблюдательном пункте за ней следили человек пятнадцать. Еще человек сто расположились на железнодорожном полотне неподалеку, откуда видимость была несколько лучше. Там были в основном астрономы, приехавшие посмотреть на начало своей новой науки, и те самые инженеры, для многих из которых 25 лет работы над «Радиоастроном» — вся их жизнь. Запуск прошел в штатном режиме. Все вздохнули с облегчением.

 

Впрочем, понервничать все же пришлось.

 

Раскрыть антенну должны были через пять дней после пуска — 22 июля. Но в центре управления полетом информацию об этом весь день не подтверждали. Ближе к вечеру, когда страсти накалились, прошел слух, что «Радиоастрон» так и не смог раскрыть антенну. Для российской науки это означало катастрофу. А для людей, отдавших проекту четверть века, — жизненный крах.

 

Но все оказалось не так плохо.

 

— Все нормально, — объяснила Лариса Лихачева, исполнительный директор проекта. — По всем косвенным признакам антенна раскрылась. Но прямого подтверждения нет: видимо, с датчиком что-то. Вот они и дергают антенну целый день туда-сюда. Сейчас развернули аппарат тыльной стороной к Солнцу, чтобы она нагревалась равномерно, а завтра опять попробуют протестировать. Понимаете, у них — в НПО имени Лавочкина — никогда еще так гладко старт не проходил, как в этот раз. И раз уж так все хорошо до этого было, они хотят на сто двадцать процентов быть уверены, что передают нам аппарат в рабочем состоянии.

 

На следующий день конструкторы сдали свои 120%.

 

— Все работает,— сказал мне Сергей Лихачев, муж Ларисы, отвечающий в проекте за обработку данных. — Раскрылась.

 

Теперь эта десятиметровая антенна будет летать по вытянутой орбите вокруг Земли, то удаляясь от нее на 330 тыс. километров, то приближаясь на пятьсот. Она будет работать синхронно со многими земными радиотелескопами — таким образом мы как бы получаем один большой телескоп с антенной диаметром в те самые 330 тыс. километров и угловым разрешением раз в тридцать больше того, что до сих пор удавалось добиться на Земле.

 

А изучать она будет кротовые норы.

 

Неизбежное будущее

 

Лет восемь назад случилось мне заполнять анкету, в которой был такой вопрос: «Ваше главное разочарование в жизни?» «Крах советской космической программы», — незамедлительно ответил я.

 

В восьмидесятых казалось: еще немного, и путешествия на Марс и города на Луне станут реальностью. Но сменившие их девяностые и нулевые принесли разочарование. Стало ясно, что Луну мы и впредь будем видеть так же, как наши первобытные предки — в небе, а Марс останется лишь в фантазиях Института медико-биологических проблем, запирающего людей в каменный мешок на 500 дней якобы для подготовки к полету туда примерно в 2035 году.

 

Нет, мировая наука не ушла из космоса. Американцы, отступив от Луны, вдруг начали пачками запускать научные аппараты, а чуть позже к ним присоединились европейцы и японцы. Открытия одно другого удивительнее совершались ежемесячно: экзопланеты, вода на Марсе, атмосфера Титана, темная энергия, спектр реликтового излучения, магнитное поле Солнца, фотографии Меркурия, грунт астероида, взрыв кометы — все это изучалось и изучается новым поколением космических кораблей ближнего и дальнего космоса.

 

Даже пилотируемым полетам здесь нашлось место: американцы четыре раза посылали экспедиции к телескопу «Хаббл», чтобы его отремонтировать, и телескоп выдал нам такие картинки с края Вселенной, какие наши предки из каменного века не смогли бы увидеть при всем нашем к ним уважении. Россия в этом празднике участвовала лишь теоретически. То есть наши физики и астрофизики-теоретики были и все еще остаются лучшими в мире (это подтверждают два десятка имен, начиная с Фридмана и Гамова, Шкловского и Зельдовича и заканчивая Сюняевым, Старобинским и Линде). Но научных аппаратов в космосе у России уже давно нет, а единичные попытки запусков заканчивались в последние годы неудачами, как это было с упавшим «Марсом-96» или замолчавшим «Коронас-Фотоном».

 

Собственно, проект Астрокосмического центра ФИАН (АКЦ ФИАН) под руководством академика Николая Кардашева и НПО им. Лавочкина был для российской науки, с одной стороны, последним шансом, а с другой — самым амбициозным проектом. Этим прибором Кардашев собирался искать кротовые норы. Несколько лет назад он с азартом рассказывал мне о них:

 

«Кротовая нора — это тоннель, связывающий разные части пространства. Вход в тоннель может быть размером со звезду, с планету, с дом, с пылинку. И если вы туда нырнете, то вынырнете в другом месте. Можно попасть в другую часть нашей Галактики, можно — в другую галактику, можно — в другую Вселенную… Оттуда можно посылать радиосигналы, общаться и даже можно сквозь этот тоннель наблюдать, что делается на другом конце — если вы наведете телескоп».

 

Телескоп изначально рассчитывали сделать и запустить за шесть лет, но история растянулась на четверть века, потому что несколько раз прерывалось финансирование. В результате сыпались договоренности с иностранными участниками, из проекта ушла часть людей, некоторые приборы создавались заново, но в конце концов обсерваторию сделала та же команда инженеров, что и начинала. И, конечно, оказалось, что кротовые норы — лишь часть научной программы, хоть и самая интересная для публики, но и самая неясная.

 

— Для начала нужно показать, что такие объекты вообще есть, — говорил Кардашев.

 

В общем, «Радиоастрон» — с одной стороны, привет из тех времен, когда города на Луне казались неизбежным будущим, а с другой — доказательство того, что Россия по-прежнему может осуществлять проекты мирового масштаба.

 

Черная дыра — вид с Байконура. Байконур — вид из космоса

 

— Наши коллеги из Роскосмоса и НПО им. Лавочкина говорят о завершении большого проекта, а для нас это только начало, — говорит астроном Юрий Ковалев, старший научный сотрудник АКЦ ФИАН.

 

Юрия я вычислил в байконурском кафе «Звездное небо» в день перед запуском аппарата «Спектр-Р» (так называется космический элемент системы «Радиоастрон»): человек лет где-то от тридцати до сорока переводил меню на английский десятку иностранцев. Иностранцы были явно академического вида, а на переводчике — маечка с изображением телескопа и надписью, из которой следовало, что это знаменитый стометровый Грин-Бэнк, один из самых больших телескопов в мире и самый большой из тех, чью антенну можно развернуть в любую точку неба.

 

Мы познакомились. Оказалось, что Юрий действительно из команды ученых, приехавших посмотреть на запуск, что ученых и инженеров прибыло довольно много — целый самолет, что в основном они здесь не по работе, а чтобы «просто посмотреть», что самого Юрия интересуют активные ядра галактик и что за исследования этих ядер он в прошлом году получил премию имени Ф. А. Бредихина РАН, которую присуждают за выдающиеся работы в области астрономии.

 

С Ковалевым и его коллегой, совсем молодым аспирантом Сергеем Пилипенко, мы гуляем по Байконуру, и я слушаю рассказы о том, чего ждать от работы «Радиоастрона».

 

— Если во время пуска все пройдет хорошо и вся аппаратура будет нормально работать на орбите, мы будем ждать первого результата — детектирования лепестков. Это профессиональный жаргон. А если переводить на обычный язык, это означает: мы должны навести орбитальную и наземные антенны на яркий источник излучения в космосе и получить корреляцию сигналов. Это докажет, что наш интерферометр — а именно так вся система называется — действует.

 

В общем, по словам Юрия, первые три месяца уйдут на инженерные тесты аппарата, затем будут искать эти самые лепестки, а примерно через полгода начнется собственно научная программа.

 

Одними из первых объектов наблюдений будут те самые активные ядра галактик, которыми занимается Ковалев. Смысл слова «активный» здесь следующий: центр такой галактики очень ярко светится практически во всем спектре — от радиоволн, которые мы не видим, до гамма-лучей, которые мы тоже не видим (где-то между ними, впрочем, есть и обычный видимый свет). Считается, что светится находящаяся там черная дыра. Звучит, конечно, странно, ведь все знают, что черная дыра — это объект с чудовищной гравитацией, всасывающей любое вещество внутрь, а наружу ничего уже не выпускающий. Даже свет не может выбраться за ее границу, настолько велика у нее сила притяжения. Но как раз это мощное тяготение и есть причина того, что светятся окружающие черную дыру области.

 

Черная дыра в центре галактики — обычное дело. У нас, в Млечном Пути, она тоже есть. Не самая крупная, всего в 3–4 миллиона раз тяжелее Солнца. Естественно было бы начать наблюдения с нее. Но, во-первых, она излучает довольно слабо, так как не успела собрать вокруг себя много вещества, а во-вторых, где-то в Галактике между ней и Землей находятся облака межзвездной пыли, которые ее попросту закрывают. Плохо ее видно, в общем.

 

— Есть галактика М 87, другое название — Дева А, — говорит Ковалев. — Она находится очень близко к нам, всего 16 мегапарсеков. В ее центре находится сверхмассивная черная дыра — массой в шесть миллиардов Солнц. И там очень хорошие условия для наблюдения. Линейное разрешение, которое мы можем получить, сравнимо со шварцшильдовским радиусом (радиус Шварцшильда — граница черной дыры, откуда свет уже не может вылететь из-за гравитации. — «РР»).

 

— А что можно увидеть на таких расстояниях?

 

— Если быть оптимистом, то можно надеяться увидеть аккреционный, то есть пылевой, диск или даже так называемый бублик — газ, движущийся вокруг черной дыры. Это первая возможность впрямую наблюдать объекты такого масштаба! Думаю, что размер Девы А — несколько световых дней, то есть порядка десятка Солнечных систем. То же самое можно сказать про струи вещества, которые выбрасывает черная дыра. Они очень узкие и с Земли видны как ниточки, а все, что находится внутри, — загадка. Если нам повезет, то «Радиоастрон» как раз покажет их внутреннюю структуру. Если получится, это будет огромное достижение, ведь многие люди до сих пор не верят, что черные дыры существуют!

 

То же самое, только про еще более мелкие объекты, сказал мне Карл Гвинн, профессор физики Калифорнийского университета, один из ведущих специалистов в мире по пульсарам — мертвым ядрам бывших звезд, образовавшимся после взрыва сверхновых. Мы сидели вечером в холле гостиницы «Центральная», американец говорил о своих любимых пульсарах, в которых вещество сжато настолько сильно, что атомы распались на нейтроны, плотно упакованные внутри звезды.

 

— Чего я ожидаю от «Радиоастрона»? — Гвинн даже на мгновение не задумался. — Пульсары очень маленькие: звезда может быть всего около 15 километров в диаметре. Из-за таких размеров трудно определить расстояние до них и точное их положение в пространстве. А «Радиоастрон» может это сделать. И еще есть идея, что межзвездный газ может послужить линзой и сконцентрировать лучи пульсара. Тогда мы просто увидим изображение пульсара здесь. То, чего никто никогда не видел! Представляете — такой маленький объект! Если получится, мы сможем увидеть даже фазы вращения, а не только короткую вспышку излучения.

 

Звучало это нереально — 15 километров, это… ну, чуть больше города Байконур и значительно меньше космодрома. А что можно увидеть оттуда, из Галактики, если навести сюда какой-нибудь прибор с еще большим разрешением? Что увидят гипотетические инопланетяне (которых всю жизнь, кстати, мечтает обнаружить тот же академик Николай Кардашев)? Режимный городок, обнесенный стеной по периметру, живущих в нем несколько десятков тысяч человек, главное занятие которых — запускать ракеты в космос, пустыню вокруг, невысокие деревья, расти которым на здешней рыжей земле позволяет только орошение водой Сырдарьи. Они увидят расположенные в геометрическом порядке трех-пятиэтажные дома узнаваемо казарменной архитектуры; улицы почти без машин, потому что ездить здесь особо некуда; много кафе и кучу космической символики: там макет ракеты на постаменте, здесь сама ракета, дальше портрет Гагарина в шлеме, еще дальше кафе «Звездное небо». В общем, нецивильно.

 

30 лет без телескопа

 

Здания технического комплекса ракет-носителей «Зенит» на Байконуре — оазис офицерского уюта. Напротив брошенные казармы войсковых частей, вокруг пустыня, а здесь побеленные снизу деревца, выметенный асфальт и вежливый охранник, ровняющий грабельками сухую землю по краям газончика. За два дня до старта ракету вывозят из ангара на площадку № 45, где ее окончательно подготавливают к пуску.

 

— Как ваше предприятие живет? — спрашиваю я у Александра Дегтярева, генерального конструктора и одновременно генерального директора КБ «Южное», которое и сделало ракету-носитель.

 

— Нормально. Основой стратегических сил Российской Федерации пока остаются наши ракеты. Мы ведь были основой ракетной отрасли Советского Союза, и сейчас на вооружении стоит SS-18, если по американской классификации.

 

— А для запуска, — продолжает Дегтярев, — наш «Зенит» выбрали потому, что он оптимально соответствует по характеристикам. По сути, это трехступенчатая ракета, потому что в составе полезной нагрузки есть разгонный блок «Фрегат». Он и выводит аппарат на высокую орбиту. Он вон там, — конструктор указывает куда-то на головную часть ракеты, которую медленный тепловоз вывозит из ангара.

 

Когда ракета доезжает до старта, происходит построение расчетов. Выглядит это так: у командного пункта в несколько рядов стоят сотни людей, а кто-то главный командирским голосом их уговаривает:

 

— Уплотненный график, 23 часа… Никакой надежды на память! Инструкция, книжка! Память — хорошо, книга — лучше… Стартовый комплекс — объект повышенной опасности!.. Только тот персонал, который предусмотрен… Далее дисциплина по связи… Никакой лирики, никаких отступлений… Начало работы буфета не должно стать… когда все всё бросают и бегут за пирожками…

 

Как детям малым.

 

Ракета наконец поднимается в вертикальное положение, и те немногие праздные люди, которые находятся на площадке, перемещаются вслед за ее тенью — полдень, жарко. На самом верху ракеты под обтекателем то, ради чего работали тысячи людей, — аппарат «Спектр-Р», космический сегмент интерферометра «Радиоастрон». Состоит он из антенны, научной аппаратуры и платформы «Навигатор», разработанной в НПО им. Лавочкина.

 

— Мы столько лет не запускали в космос такие сложные научные аппараты, как этот. Как вообще удалось его сделать? — спрашиваю я на следующий день у Бориса Новикова, технического руководителя проекта «Радиоастрон».

 

— Старичков сохранили. Над проектом работали уникальные специалисты. Элита. И в Институте космических исследований, и в АКЦ ФИАН, и в НПО им. Лавочкина. — Новиков начинает рассказывать о людях, называя десятки фамилий, и кого не назовет — все «удивительные и прекрасные». Впрочем, сам Новиков — тоже практически легенда нашей научной космонавтики. За 42 года работы он участвовал в десятках пусков и во всех, к сожалению, немногочисленных проектах последних 25 лет: работал с «Вегами», летавшими к комете Галлея, с рентгеновской обсерваторией «ГРАНАТ», а сейчас совмещает работу главного конструктора (по научной аппаратуре) и технического директора в проекте «Фобос-Грунт», стартующем к спутнику Марса осенью.

 

— Этому проекту почти тридцать лет, работа шла… мучительно долго, а настоящее финансирование началось, я думаю, лет пять назад. И действительно, с тех пор как мы потеряли «Марс-96», на который я тоже годы положил, мы ничего подобного не запускали. Но там такие технические решения! Вот антенна, например. В НПО им. Лавочкина есть изумительный человек — Владимир Серебренников. Он придумал, как сделать антенну складывающейся. Ее углепластиковые лепестки при запуске свернуты, потом она раскрывается криволинейно, и каждый лепесток — а их двадцать семь — должен встать в специальный замок. И все замки должны сработать одновременно. Или, например, водородные стандарты частоты — они необходимы, чтобы согласовать время наблюдения на космическом и наземных телескопах. Никто никогда не запускал такие устройства в космос.

 

Новиков продолжает рассказывать о технике и людях, которые ее делали, и я, в общем-то, к этому готов: инженеры могут о своем говорить часами, пытаясь объяснить такие подробности, понимание которых требует полного курса специального вуза.

 

— Тогда неудобный вопрос, — перебиваю я. — Почему после пятнадцатилетнего перерыва из всех проектов мы выбрали для реализации самые сложные?

 

— Потому что это продолжение работы, которую мы начали очень давно. Работу хотелось закончить!

 

Космос как концепция

 

Уже после старта «Зенита» Владимир Поповкин, глава Роскосмоса, в одиночестве ходит взад-вперед перед домиком наблюдательного пункта, слушая трансляцию: «320 секунд, полет нормальный… 460 секунд, осевая перегрузка ракеты в норме… 500 секунд, движение ракеты устойчивое…» И так до 520-й секунды, когда головной блок отделился от но­сителя и «Спектр-Р» вышел на орбиту.

 

Он явно нервничает. Вообще, похоже, Роскосмосу с руководителем повезло.

 

— Лично вы как считаете: какой космос нам нужен? — спрашиваю я.

 

— У меня вот какая мысль: отключите на минуту всю нашу космическую группировку и посмотрите после этого, как будет жить Россия. Не будет ни связи, ни телефона, ни навигации. Остановятся банки. Начнется коллапс. То есть прагматичная задача проста: нужно наращивать то, что используется на Земле.

 

— Ну а развитие? Наука?

 

— Как первый шаг мы выбрали телескопы. «Спектр-Р» — первый аппарат, за ним мы будем каждые два года запускать новый телескоп. Следующим будет рентгеновский, затем — ультрафиолет, потом — миллиметровый. По сути, этими обсерваториями мы перекроем весь диапазон волн, на которых наблюдается Вселенная. Во-вторых, нужно посетить другие планеты. Человека с «билетом в один конец» отправлять не хочется — нужно думать, как его вернуть. Может быть, первый раз на Марс не нужно садиться, а достаточно просто его облететь. В научной части мы формируем программу так: совет по космосу Академии наук готовит предложения, а мы рассматриваем финансовые возможности и начинаем работать. Кроме того, мы создали стратегический совет, куда вошли наиболее авторитетные люди из Академии наук и из отрасли.

 

В общем, мне Поповкин понравился. Тем, что явно хочет осмысленных действий по любому пункту, от перспективного аппарата для космонавтов до стиля работы с прессой. Кроме того, в нем совсем нет солдафонства, несмотря на то что человек несколько лет командовал космическими войсками, а в Роскосмос пришел из Министерства обороны.

 

И еще очень важно, что на такого человека есть запрос: практически все, с кем я общался — и журналисты, и ракетчики, и астрономы, — говорили, что именно такой им нужен и они боятся, что его вдруг снимут.

 

Радиус Шварцшильда

 

Через три с половиной часа после запуска разгонный блок «Фрегат» уводит «Спектр» с низкой орбиты, отправив его лететь за 330 тыс. километров от Земли. После этого к прессе наконец выходит Николай Кардашев, наотрез отказывавшийся говорить до запуска. На небольшом брифинге он появляется вместе с генеральным конструктором НПО им. Лавочкина Виктором Хартовым и двумя представителями Роскосмоса.

 

— Класс объектов, которые будут изучаться, очень широкий: далекие объекты — квазары, мощные взрывы, поведение сверхмассивных черных дыр, гравитационное поле Земли. Возможно, существуют белые дыры, возможно, тоннели в другие пространства. Это все относится к новой физике, мы будем это исследовать. Первые объекты наблюдений мы выбрали, их примерно десятка два-три, и все они очень яркие. Сейчас мы увидим в подробностях то, что до сих пор было видно с Земли как светящиеся точки. Есть десятки теорий, и предсказать, какие из них окажутся верными, невозможно.

 

— Насколько вероятно обнаружить тоннели в другие пространства, кротовые норы?

 

— Вот эти мощные внегалактические источники излучения вполне могут оказаться кротовыми норами или первичными черными дырами, которые образовались при рождении Вселенной, при первом взрыве. Разрешение «Радиоастрона» выше, чем диаметр Шварцшильда, который дает общая теория относительности. Значит, мы сможем увидеть детали такого объекта — поляризацию, особенности излучения. Мы сможем опознать кротовые норы, если они есть в космосе.

 

Кардашеву уже под восемьдесят, но когда он говорит о тоннелях в пространстве, глаза у него становятся бешеными. С такой энергетикой эти тоннели он непременно найдет. Нашел же он способ удерживать проект в течение тридцати лет и показать молодежи, что наша страна тоже кое-что может.

 

В общем, похоже, российский космос снова начинается.

 

«It is important to see when things began (Важно увидеть, как все начиналось)», Карл Гвинн, профессор физики Калифорнийского университета. Сказано в холле гостиницы «Центральная» города Байконур за несколько часов до запуска в космос обсерватории «Радиоастрон».

 

Правила игры

 

В 60-е годы прошлого века радиоастрономы исповедовали следующую идею: большие телескопы настолько дороги, что они должны работать по самым лучшим программам наблюдений вне зависимости от того, какая страна подает заявку. Появилась так называемая open sky policy — политика открытого неба.

 

То есть большие телескопы отдают свое наблюдательное время тому, чья заявка на исследования неба выигрывает на конкурсной основе.

 

Для первоначального этапа работы команда «Радиоастрона» получила договоренности о времени на крупнейших антеннах мира: 100-метровом телескопе в Германии, 100-метровом в США и 300-метровом в Аресибо.

 

Точно так же все пять лет работы «Радиоастрона» будет проводиться конкурс заявок на его время.

 

Когда все начиналось, NASA выделило $100 млн на станции слежения. Поддержка шла на самом высоком уровне: академик Сахаров написал письмо правительству США. Но проект настолько затянулся, что изначальные договоренности сейчас аннулированы.

 

Команда Кардашева вновь ведет переговоры, но сегодня по факту у нас есть только одна станция — в Пущине. Это сокращает время наблюдений, но не радикально, поскольку орбита у «Радиоастрона» вытянутая, и он виден очень долго.

 

Проснись, страна огромная!

 

От редакции

 

После долгого перерыва на беспокойный сон мы постепенно приходим в сознание. Мы — это страна, управленческая культура в ней, наука и инженерия. Есть такая надежда, по крайней мере. Запуск в космос многострадального, но обнадеживающего проекта «Радиоастрон» через 25 лет после начала его разработки точно описывает ритм нашей версии сказки о спящей царевне. Гроб оказался не хрустальным.

 

Этот тезис у нас вовсе не от тоски по СССР, коммунистической утопии, романтике 1960-х и великим, но прошлым проектам. Тоска и причитания о прошедшем «золотом веке», очевидно, не являются признаком ясного сознания. Более того, последние проблески коллективного разума у нас были замечены тогда, когда мы поняли, что СССР сильно болен, причем и на голову. Маразм Брежнева, саморазрушительная безответственность ЦК времен Горбачева, трясущиеся руки членов ГКЧП были лишь карикатурами на системно больную страну.

 

«Мама, мы все тяжело больны» — это было последней здоровой мыслью нашего общества. Потому что следующая мысль («А давайте разменяем все непрактичное, что у нас есть: идеалы, большие проекты, мечту, историю, традиции, мораль — на колбасу и евроремонт») была уже болезненным бредом. Так в жизни никто не меняется. Зато дикари меняют настоящие ценности на безделушки.

Конечно, были большие группы людей, которые и тогда оставались в сознании — строили бизнесы, осваивали новые профессии и практики, а не пребывали в депрессии. Но трезвый рассудок и смысл жизни, к счастью, остались не только у предприимчивых «новых». Оказалось, что вопреки «руке рынка» многие учителя продолжали учить, врачи — лечить, а инженеры «Радиоастрона» упрямо продолжали делать свой «несовременный» и «непрактичный» проект.

Плата за сон разума была тем не менее огромной. Наверное, исторически уникальной. Мы, засыпая, перешли от развитого социализма к многоукладному обществу, где сочеталось все: от рабовладения и феодализма до капитализма позапрошлого века и новомодного постмодернового морока. Никогда никакая страна добровольно и с энтузиазмом не отказывалась от собственных достижений в области культуры и цивилизации. Те же большевики, которые все время грозились покончить со старым миром и постоянно воевали с собственным населением, в области инженерной и научной культуры взяли на вооружение великие проекты, которые не смог реализовать царизм. Тот же Днепрогэс — это проект дореволюционных инженеров.

В США старые инженеры тоже жалуются на потерю высокой технологической культуры после свертывания большого соревнования 1960–1970-х и тем более после краха СССР. Специалисты утверждают, что даже после аккуратной консервации американского лунного проекта прошлые технологии уже не восстановить. Надо создавать новые. Когда прогресс останавливается, немедленно разверзается пропасть самого дикого варварства. А того, что безвозвратно потеряли мы, — не сосчитать.

«Радиоастрон» начали и героически завершили старые специалисты, советская элита (подлинная элита была, конечно, научно-инженерной, а не номенклатурной). Заканчивается и технологический ресурс советского времени. Саяно-Шушенская ГЭС и «Булгария» — только первые симптомы. Непонятно, как восстанавливать разрыв поколений и учиться делать новое. Шансов, как всегда на переломе истории, немного. Но если мы и вправду приходим в сознание — они есть.

 

Алексей Торгашев

http://vpk.name/news/55691_zaglyanut_v_dyiru.html

Дети Галактики

21.01.2012

Межзвездное пространство, холодные облака. Если температура Вселенной повысится, в облаках произойдет сжатие газа, и родится новая звезда или планета. Возможно, так появилось Солнце и наша Земля.

"Крупнейшее достижение последних 20 лет состоит в том, что мы научились уже массово открывать планеты вокруг других звезд. Уже более 600 открыто, у некоторых их них удалось померить химический состав атмосфер и понять то, что там есть вода и какие-то другие биомаркеры", - отмечает член-корреспондент РАН, директор Института астрономии РАН Борис Шустов.

Вселенная открыта для "общения". Ее излучение несет полезную информацию для всего человечества. А космические телескопы словно "переводчики" со сложного языка Галактики.

"Радиастрон" уже составляет свой первый орбитальный "словарь". Вскоре ему в помощь отправятся другие "Спектры" - "Рентген-гамма" и "Ультрафиолет".

"Сегодня мы мечтаем о том времени, когда мы будем знать об окружающий нашей Вселенной практически все. Сейчас мы готовим с Роскосмосом проект, который называется "Спектр-Рентген-гамма". На этом спутнике будут стоять уникальные приборы, которые смогут увидеть все скопления галактик во Вселенной", - поясняет руководитель проекта "Спектр-РГ" академик РАН Рашид Сюняев.

"Радио", "Рентген-гамма", "Ультрафиолет" – в названиях телескопов их главная функция: видеть и принимать излучение космических тел, каждый в своем диапазоне.

Заглядывать в дальний космос необходимо, чтобы лучше понять самих себя. Оказывается, люди во многом похожи на звезды.

"Ведь астрофизика дала понимание, что все мы с вами дети Галактики, или, лучше сказать, дети звезд. Все тяжелые химические элементы тяжелее гелия и водорода, из которых мы с вами состоим, тот же самый кислород, кальций и так далее, все это рождено в звездах", - рассказывает член-корреспондент РАН, директор института ИНАРАН Борис Шустов.

В ультрафиолетовом диапазоне давно работает американский оптический телескоп "Хаббл". Однако он уже не справляется с нагрузкой. Количество научных заявок по исследованию дальнего космоса в 10 раз превышает возможности телескопа.

В 2015 году "Спектр-УФ" отправится на орбиту и возьмет на себя ряд научных задач в ультрафиолетовых исследованиях.

"Этот телескоп делается под руководством и при основном вкладе со стороны России, поэтому для российского научного сообщества, научно-технического сообщества этот телескоп гораздо более доступен, чем телескоп имени Хаббла. Это фактически национальный проект", - подчеркнул Борис Шустов.

"Диаметр главного зеркала - 1700 миллиметров. Это позволяет собрать большой световой поток даже от очень слабых звездных величин и получить изображение тех участков Вселенной, которые в данном диапазоне не видны с Земли", - показывает ведущий конструктор телескопа спутника "Спектр-УФ" Ильяс Мансуров.

На испытательном стенде в НПО имени Лавочкина "Спектр-УФ" выглядит именно так, как это будет в космосе.

Недавно телескоп успешно прошел испытания на все виды нагрузок, которые возникнут до старта, во время старта и в момент выведения на орбиту.

На финальном этапе сборки "Спектр-УФ" установят на уже проверенную космическую платформу, на такой же платформе сейчас летает "Радиастрон".

"Все три проекта строятся на единой базовой платформе. Это платформа "Навигатор", которая адаптируется в каждом конкретном случае под свою полезную нагрузку", - знакомит с особенностями платформы главный конструктор спутников серии "Спектр" Владимир Бабышкин.

Астрофизики считают, что в ультрафиолетовом диапазоне сосредоточена самая богатая информация о Вселенной. Только так можно увидеть все ее краски. И пока расстояние до звезд исключает возможность путешествия, человечеству не обойтись без космических телескопов. Их пристальный взгляд поможет ответить на вечный вопрос: как появилась Земля и человек на Земле.

 http://www.vesti.ru/doc.html?id=692099&;cid=7 

"Радиоастрон": в поисках новых миров

21.04.2012

Почти год работает на орбите детище академика Кардашева - телескоп-интерферометр "Радиоастрон". В космических исследованиях открыта новая эпоха. Цель "Радиоастрона" - изучать черные дыры и искать "кротовые норы" в другие миры. Сегодня не только директор Астрокосмического центра ФИАН, академик Кардашев, которому на днях исполняется 80 лет, но и другие ученые убеждаются, что это не фантастика.

Можно ли благодаря зеркалам увидеть другие миры? Можно, ответят земляне, читавшие Льюиса Кэролла, но это сказки. Можно, подтвердят ученые, и это — почти реальность. Вскоре год как работает на орбите "Радиоастрон", который своими зеркалами-антеннами изучает таинственные черные дыры.

"Один кусочек зеркала мы запускаем в космос, а остальные кусочки того же самого зеркала находятся на Земле. Все эти кусочки называют радиотелескопы. А образуют они единый большой радиотелескоп", — рассказывает академик Кардашев.

На его создание ушло более 30 лет. В прежнее время разработки ученых казались фантастикой. Первый проект телескопа был размером 1 километр. Из практических соображений телескоп свели к 10 метрам. То, что "Радиоастрон" стал нашими глазами во Вселенную, – не просто красивое сравнение.

"Когда радиотелескоп удаляется на большое расстояние от Земли, увеличивается его "зрячесть". Как мы двумя глазами: если один глаз закрыть, вообще не узнаете, на каком расстоянии расположен предмет. И вот этот радиотелескоп, выпущенный в космос, создает такую проекцию", — поясняет заведующий отделом Астрокосмического центра ФИАН Михаил Попов.

Используя высокое угловое разрешение, "Радиоастрон" дает возможность детально рассмотреть далекие космические объекты. Открывается совершенно новое качество исследований. Поэтому в ближайшем будущем загадок, связанных с черными дырами, будет меньше.

"Черная дыра - это объект, который получается в результате катастрофического сжатия какой-либо массы. Например, массы газа. Если эта масса газа сжимается очень сильно, сила тяготения, поля тяготения вокруг нее нарастают - необычно, необычно сильно и настолько сильно, что не упускают ничто из той области, которая его окружает", - говорит заместитель руководителя Астрокосмического центра ФИАН Игорь Новиков.

Внутри черной дыры сила гравитации столь велика, что время как бы замирает. Границей является точка сингулярности, где время и пространство теряют свой смысл.

"Если мы попадаем в черную дыру, то, вообще говоря, согласно современной теории, можно пролететь мимо сингулярности и попасть в другую Вселенную", - рассказывает Игорь Новиков.

Подтвердить или опровергнуть эту гипотезу пока невозможно. Однако с помощью "Радиоастрона" можно уже реально наблюдать за таинственными объектами, открывать все новые их свойства и выдвигать новые теории.

"Если я знаю какую-то красивую гипотезу, которую можно проверить, и она достаточно обоснована, ничему не противоречит, мне это представляется исключительно интересным, и я сразу же начинаю думать, как бы мне это в ближайшее время проверить и убедиться, что это правильно или не правильно. Так что если это назвать мечтателем, то я как раз такой мечтатель", - улыбается академик Кардашев.

Возможно, когда-нибудь, благодаря таким мечтателям, путешествия через черную дыру в другие измерения, как в сказке про Алису и Зазеркалье, станут действительно реальными.

http://www.vesti.ru/doc.html?id=775555&;cid=7

Черная дыра на глазах астрономов съела "престарелую" звезду

03.05.2012

Американским астрофизикам довелось наблюдать шокирующее зрелище, которое произошло на расстоянии в два миллиарда световых лет от Земли в созвездии Дракона. Сверхмассивная черная дыра разорвала на части престарелую звезду, так называемого красного гиганта. После чего съела то, что от этой звезды осталось. Разумеется, весь этот процесс (пугающий на словах!) продолжался не один день и даже не один месяц, так что ученые успели все зафиксировать.

Можно ли назвать новостью события, которые произошли 2 миллиарда лет назад? Пока скорость света непреодолима, приходится ждать так долго. Ученые из университета Джона Гопкинса в американском Балтиморе зафиксировали "кушающую" черную дыру.

Вот как это было: на "обед" у черной дыры была пожилая, уставшая звезда. Почти как Солнце, но только постарше. Уникальность открытия астрофизиков в том, что найти в черном космосе черную дыру — непросто. Притягивает же тела эта черная дыра по человеческим меркам очень долго. Поэтому присутствовать на обеде черной дыры, сопровождающемся светопредставлением гибели светила, для любого астронома — настоящий праздник.

"Нарастают приливные силы, которые стремятся вытянуть звезду в форме огурца, длинная ось которого направлена к черной дыре. И когда эта звезда подходит совсем близко (к черной дыре), этот огурец вытягивается, грубо говоря, в струю", — поясняет заведующий отделом нестационарных звезд и звездной спектроскопии Института астрономии РАН,доктор физико-математических наук Николай Чугай.

Место события: одна из галактик в созвездии Дракона. До нас — 2 миллиарда световых лет. Сверхмассивная черная дыра. У нее до того огромные масса и плотность, что даже фотоны света не могут преодолеть ее притяжения, потому она и называется черной. Все, что в сравнительной близости от этого коварного объекта, обречено. Рано или поздно черная дыра "пообедает". Большая звезда вращается вокруг "хищника" по эллиптической орбите, с каждым витком приближаясь к гибели.

"При подлете оболочка звезды срывается приливными силами черной дыры. Образуется обнаженное гелиевое ядро. А затем само гелиевое ядро начинает за счет приливных сил вытягиваться и разрывается на части. Образуются выбросы, часть вещества выходит на бесконечность, а часть образует сильные эллиптические орбиты", — рисует на доске "завтрак черной дыры" директор Государственного астрономического института имени П.К. Штернберга, академик РАН Анатолий Черепащук.

Остатки звезды сталкиваются с черной дырой, вызывая ультрафиолетовые вспышки. Их как раз и зафиксировали ученые на Земле. Это поможет в изучении космических тел, особенно тех, которые нельзя ни потрогать, ни увидеть. Хотя мрачные тела эти есть не только на отдалении в 2 миллиарда световых лет. Считается, что черные дыры существуют чуть ли не в каждой галактике.

http://www.vesti.ru/doc.html?id=786064&;cid=9

Интересная статья? Поделись ей с другими:

Добавить комментарий


Защитный код
Обновить

Список новостей - Технологии

Список видео